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Abstract. The Hellmann-Feynman theorem valid for the parameter dependence of bound 
states is generalised to the case of Gamow states using an appropriate definition of scalar 
products and expectation values with such states. The one-dimensional square well poten- 
tial is considered as an illustrative example. 

1. Introduction 

There has been recent interest in the Pauli-Hellmann-Feynman theorem (PHFT) and 
its applications within solid state theory and quantum chemistry to ( i )  inhomogeneous 
jellia including spheres, voids, adsorption and forces on and between jellia [ 1-61, (ii) 
forces and pressure in solids [7], (iii) phonon energies in semiconductors [8], ( iv)  
relaxation of metal surfaces [9], (v) point defects in metals [ lo]  and semiconductors 
[ll],  (vi) the gauge treatment of the quantum Hall effect [12], and (vii)  clusters [13]. 
It is mentioned in connection with the stress theorem [14] and it has a relationship 
with the force theorem [15]. The PHFT (first found by Pauli, see, e.g., [3] or [14]) 
states the following: if a system described by a Hamiltonian H ( A ) ,  where A is a certain 
parameter, has bound states pn, E,,, then it is 

If A means, for example, the position of a nucleus (within the Born-Oppenheimer 
approximation of clusters or solids), then on the RHS a PHF force appears, driving a 
relaxation. The parameter may also be a coupling constant, e.g. the well known 
‘charging formula’ within the many-body theory of the electron gas ground state 4 

where H = H o +  V ,  V-  A = e 2 / 4 m o ,  rests upon the PHFT (see, e.g., [16]). 
The question arises if an appropriately generalised version of the PHFT can be 

derived also for scattering states. For the continuum of scattering states there does 
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not exist any parameter dependence E ( A ) ,  but the complex energies E: of the discrete 
Gamow states (see 0 2)  of course depend on A and it is natural to ask for dE:/dh 
(see 0 3) .  For simplicity we restrict ourselves to single-particle problems. The result 
(3.3) will be illustrated by a simple example (§ 4). 

2. Gamow states 

Quasistationary states were introduced in nuclear physics by Gamow long ago in order 
to describe the a-decay phenomenon [17]. After that a lot of attempts were made to 
introduce such resonant states in formal nuclear reaction theories (see, e.g., [ 181) as 
well as in practical calculations [19]. 

Gamow states are defined as solutions of the stationary Schrodinger equation 
satisfying the asymptotic boundary conditions of purely outgoing (+) or  purely incom- 
ing ( - )  waves. These conditions makes the problem non-self-adjoint. Hence the energy 
eigenvalues of the adjoint states according to 

HIP;)= E;lcp;) (2 . la )  

H k ) =  Eilcp,) (2 . lb)  

are complex (E: = E , r i T ,  with r, >O), and the Gamow states are not normalisable 
and orthogonal in the usual sense because of the divergence of the amplitudes for 
large distances. 

In an  equivalent way to (2.1), the problem may be formulated by a homogeneous 
Lippmann-Schwinger equation 

Iq*(E)) = G,'(E) Vlcp*(E)) G,'(E) = ( E  -p2/2M ki i3- I  (2 .2)  

where p is the momentum operator, G, ' (E)  is the free particle Green operator and  
6 2 0 expresses the desired asymptotic behaviour. The condition 

(2.3) 

needed in order to obtain non-trivial solutions of (2.2), cannot be fulfilled by any real 
energy E. However, after calculating the matrix elements of G, ' (E) ,  taking the 6 limit 
and performing an  analytic continuation to the complex E plane according to E - ,  
E F i r ,  (2.3) becomes complex and yields E, and r,, the position and  decay width of 
the Gamow state, respectively. Finally from (2.2) one obtains the corresponding 
wavefunctions cp: = cp*(E:) .  The whole procedure can be formulated in a compact 
form as 

detil 1 - GG( E )  V/I = 0 

stressing the fact that an  interchange of the 6 limit and  the analytic continuation would 
give the wrong results (for example, incoming waves with exponentially decaying 
amplitude instead of the desired outgoing waves). 

Recently [20] a generalised scalar product of an outgoing and  an  incoming Gamow 
state was defined in an  analogous way: 

( i )  calculating the integrals occurring with an  energy E + i s  for the outgoing and  
E - i6  for the incoming state, 

( i i )  taking the 6 limit, 
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(iii) performing the analytic continuation to the complex E plane with E + E :  = 

In  this way it has been shown that the Gamow states form a biorthogonal set 
E ,  F i r , .  

(cp, I Pi,)  - 6,n ( 2 . 5 )  

and a proper norm has also been introduced. Generalised 'expectation values' 
(cpJAlcp:)/(cp, I c p i )  can be defined similarly. 

We would like to mention that Gamow states, bound states and  suitably chosen 
scattering states within the proposed treatment fulfil a completeness relation [20]. 

3. The PHFT for Gamow states 

If H = H ( A )  then the Gamow states cpz, E :  depend on the parameter A, too. From 

one obtains easily 

(3 .3a )  

(3.36) 

This is the extension of the PHFT to Gamow states. 
Comparing (1.1) and  (3.3) the theorems are quite similar, except that for Gamow 

states on the RHS a generalised expectation value is introduced. As mentioned in 9 1 
the PHFT for bound states is a useful tool (at least as a rigorous sum rule). The same 
statement may be true for Gamow states because they influence the scattering properties 
for real energies as poles of the S matrix. 

If E z ( h )  changes in such a way that, for a certain critical value A , ,  the Gamow 
state n transforms itself into a bound state as was seen, e.g., in [19, 201, then (3 .3)  
should also turn into (1.1). 

A special case of Gamow states appears if single atoms, clusters or spherical jellia 
are considered to be in a homogeneous weak external electric field. Bound states 
principally d o  not exist further on. They turn into Gamow states, the energies of which 
have very small imaginary parts, describing the successive tunnelling away of all initially 
bound electrons with a very small probability. Now (3.3) should allow the PHFT to  
be applied to such cases (in [5] a jellium sphere in an external electric field was 
considered). 

Excited states of atoms because of their coupling to the radiation field should be 
understood principally as Gamow states, to which (3.3) should also be applicable. 



2862 P Ziesche. K Kunze and B Milek 

4. An illustrative example 

In this section the validity of the PHFT for Gamow states will be demonstrated for the 
simple example of a quantum well ~ ( x )  = -( h2/2m)u6(a - 1x1). 

According to the definition of 02 one obtains the Gamow states in space rep- 
resentation 

cp:(x) =[lim s 50 cp*(x; k i i S ) ] , , , ;  (4.1) 

with 

where k real, K = K ( k )  with K 2  = k2+ U, and only antisymmetric states are considered. 
The complex wavenumbers k: = R, F I ,  (R , ,  I,, > 0) are discrete solutions of the tran- 
scendental equation 

K c o s K a F i k s i n K a = O  (4.3) 
(see [21]). The wavefunctions (4.1) solve the stationary Schrodinger equation and  
satisfy for these wavenumbers k: and k, the asymptotic boundary condition of purely 
outgoing or incoming waves, respectively. 

However, if these complex numbers k: are immediately inserted in the wavefunc- 
tions (4.2) before taking the 6 limit the well known exponentially increasing amplitude 
would be created, which leads to divergent integrals when forming a norm or scalar 
products. That is why the Gamow states are represented according to (4.1) as operators, 
which allow us to define a proper scalar product of two Gamow states as follows: 

k ’ - k T  

Thereby expressions occurring of the following type (note that cp-* = cp’)  give 

1 
l i m l ~ ~ ~ d x ( e x p [ - i ( k - i s ) ( x - a ) ] ~ *  650 a exp[ i (k’+iS) (x-a) ]  = - i (k+  k‘ )a’  (4.5) 

The complete calculation of the scalar product (4.4) leads to the biorthogonality relation 

In the same way one obtains (using (4.3)) 

On the other hand, (4.3) yields 

( K  :)’ cot’ K :a = -( k;)’ 

and by an  implicit differentiation of (4.8) 

K:a cot K:a 2m dE;  = -- - ) h2  du 
(” %+ 1)( cot’ K:a - 

h’ d v  sin’ K :a 

(4.6) 

(4.9) 
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with E :  = ( h 2 / 2 m ) ( k : ) ' .  Finally the same result as in (4.7) follows for dE:/du, as it 
should because of the PHFT (3.3). 
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